Discussion on the Topic

CHAPTER 8-MOTION

Class-IX

CONTENTS

- Rest and Motion
- ❖ Important terms related with motion
- ❖ Establishment of equations of uniformly accelerated motion theoretically
- Graphical representation for different types of motion
- * Establishment of equations of uniformly accelerated motion graphically
- * Basic concept of uniform circular motion

REST AND MOTION

Rest- A body is said to at rest if it does not change its position with respect to its immediate surrounding

Ex.- book kept on a table is said to be at rest with respect to any other stationary objects.

Motion - A body is said to be in motion if it changes its position with respect to its immediate surroundings.

with respect to a stationary object taken as reference point.

Ex.- When the position of a moving car changes continuously with respect to a

stationary objects like houses and trees, ect., we say that the car is in motion.

But, Rest and Motion all are relative.

•

DISTANCE AND DISPLACEMENT

<u>Distance</u>- The distance travelled by a body is the actual length of the path covered by a moving body irrespective of the direction in which the body travels.

- Its S.I. unit metre (m) and C.G.S. unit is centimeter(cm)
- It is a scalar quantity

<u>Displacement</u>. The shortest distance from initial to final position of the body is the magnitude of he displacement and its direction is from initial to final position.

- Its S.I. unit metre (m) and C.G.S. unit centimetre (cm)
- It is vector quantity

<u>Distance travelled by a moving body cannot be zero but the final displacement of a moving body can be zero. The displacement of a moving body will be zero if, after travelling a certain distance, the moving body finally comes back</u>

to its starting point B D

Here distance is length of the path ABCDE But Displacement is the length of the straight line AE, Directed along A to E

UNIFORM AND NON-UNIFORM MOTION

<u>Uniform motion-</u> A body has a uniform motion if it travels equal distances in equal intervals of time, no matter how small these time intervals may be.

The distance-time graph for uniform motion is a straight line.

Non-Uniform motion - A body has a non-uniform motion if it travels unequal distance in equal intervals of time.

The distance-time graph for non-uniform motion is a curved line.

Distance-time graph of an object moving with uniform speed

Distance-time graph for a car moving with non-uniform speed

SPEED

Speed- Speed of a body is the rate change of distance with time.

- •S.I. unit is m/s and C.G.S unit cm/s
- •Speed of a body is = distance travelled / time taken.

i.e.
$$V = d/t$$

Where v = speed; d = distance travelled; t = time taken

Average Speed - The average speed of a body is the total distance travelled divided by the total time taken to cover this distance.

• Average speed = total distance travelled / total time taken.

<u>Uniform Speed</u>- A body has uniform speed if it travels equal distance in equal intervals of time, no matter how small these time intervals may be.

VELOCITY

<u>Velocity</u> - Velocity of a body is the distance travelled by it per unit time in a given direction.

- •We know that the 'distance travelled in a given direction' is known as 'Displacement'.
 - Velocity = displacement / time taken
 i.e. V = s / t
- Where V = velocity of the body; S = displacement of the body; t = time taken
- •The SI unit of velocity is the same as that, (m/s). We can use the bigger unit of kilometers per hour.

<u>Uniform Velocity-</u>A body has a uniform velocity if it travels in a specified

direction in a straight line and moves over equal distances in equal intervals of time, no matter how small these time intervals may be.

The velocity of a body can be changed in two ways -

- 1) by changing the speed of the body, and
- 2) by keeping the speed constant but by changing the direction.

Average Velocity-It is define as the ratio of displacement to the time taken in entire journey is called average velocity.

Average velocity = Displacement / Total time taken

Also it is measured as
 Average velocity = (Initial velocity + Final velocity)/ 2 = (u + v)/ 2
 u is the initial velocity and v is the final velocity.

Speed And Velocity Are Not Always Equal In Magnitude

* The magnitude of speed and velocity of a moving body is equal only if the body moves in a single straight line. If, however, a body doesn't move in a single straight line, then the speed and velocity of the body are not equal.

The average speed of a moving body can never be zero, but the average velocity of a body can be zero.

ACCELERATION

<u>Acceleration</u>-Acceleration of a body is defined as the rate of change of its velocity with time .

Acceleration = change in velocity / time taken for change ORAcceleration = (final velocity – initial velocity) / time taken i.e. a = (v-u)/t

- Where a = acceleration of the body; v = final velocity of the body; u = initial velocity of the body; t = time taken for the change in velocity
- The SI unit of acceleration is meters/second square.
- * When a body is moving with uniform velocity, its acceleration will be zero.

Retardation (or Deceleration or Negative Acceleration)- If the velocity of the body decreases, the acceleration is negative called retardation.

Retardation is measured in the same way as acceleration. Retardation is actually acceleration with the negative sign.

Uniform Acceleration- A body has a uniform acceleration if it travels in a straight line and its velocity increases by equal amounts in equal intervals of time.

The velocity -time graph of a body having uniformly accelerated motion is a straight line.

EX.- Motion of a body under gravity

Non- Uniform Acceleration- A body has a non-uniform acceleration if its velocity increase by unequal amounts in equal intervals of time.

The velocity -time graph for a body having non-uniform acceleration is a curved line.

Ex.-Motion of a car on a crowded road

Uniform acceleration

Equations Of Uniformly Accelerated Motion

• There are three equations for the motion of those bodies which travel with a uniform acceleration.

1- First Equation Of Motion

-The first equation of motion is: V = U + at. It gives the velocity acquired by a body in time t.

Acceleration = change in velocity / time taken.

Or a = v - u/tAnd at = v - uAnd, v = u + at

The equaction v = u + at is known as the first equation of motion and it is used to find out the velocity 'v' acquired by a body in time, the body having an initial velocity 'u' and a uniform acceleration 'a'. In this equation has four values in it, if three values are known, the fourth value can be calculated.

2-Second Equation Of Motion

The second equation of motion is: $s = ut + \frac{1}{2}at^2$. It gives the distance travelled by the a body in time 't'. Let the distance travelled by the body in time be's'. The distance travelled by a moving body in time 't' can be found out by considering its average velocity.

```
Average velocity = (u + v)/2

Also, Distance travelled = average velocity × t

- From the first equation of motion we have, v = u + at. Putting this value of v in equation (1), we get:

s = (u + u + at) \times t/2
s = (2u + at) \times t/2
s = 2ut + at^2/2
Or s = ut + \frac{1}{2}at^2
```

This is the second equation of motion and it is used to calculate the distance travelled by a body in time.

3-Third Equation Of Motion

- The third equation of motion is: $v^2 = u^2 + 2as$. It gives the velocity acquired by a body in travelling a distance s.
- -The third equation of motion can be obtained by eliminating t between the first two equations of motion.

From the second equation of motion we have: $s = ut + \frac{1}{2}at^2$ And from the first equation of motion we have: v = u + atThis can be rearranged and written as: at = v - uOr t = (v - u) / a.

Putting this value of t in equation (1), we get:

 $s = u(v-u)/a + \frac{1}{2}a(v-u)^2/a^2$ Or $s = uv-u^2/a + a(v^2+u^2-2uv)/2a^2$ Or $s = uv-u^2/a + v^2 + v^2 + u^2 - 2uv/2a$ Or $s = 2uv-2u^2+v^2+u^2-2uv/2a$ Or $2as = v^2-u^2$ Or $v^2 = u^2 + 2as$

This equation gives us the velocity acquired by a body in travelling a distances.

To solve the problems on motion we should remember that:

- 1) if a body starts form rest, its initial velocity, u = 0.
- 2) if a body comes to rest (it stops), its final velocity, v = 0.
- 3) if a body moves with uniform velocity, its acceleration, a = 0.

Graphical Representation Of Motion

1- Distance - Time Graphs

- -The slope of a distance time graph indicates speed.
- if the distance time graph of a body is a straight line, then its speed is uniform.

- if the distance - time graph of a body is a curved line, then its speed is non - uniform.

2- Speed - Time Graphs (Or Velocity - Time Graphs)

We can have three types of speed - time graphs for a moving body:

- □ Speed Time Graphs When the Speed Remains Constant
- if the speed-time graph of a body is a straight line parallel to the time axis, then the speed of the body is constant.
- •In a speed-time graph, the area enclosed by the speed-time curve and the time axis gives us the distance travelled by the body.
- •The distance travelled by the body in a given time for such a speed-time graph is,

Distance travelled = speed × time.

= Area of rectangle OABC

□ Speed-Time Graph when Speed Changes at a Uniform Rate

- The speed-time graph for a uniformly changing speed (or uniform acceleration) will be a straight line.
- •The slope of a speed-time graph of a moving body gives its acceleration.
- •In a speed-time graph of a body, a straight line sloping upwards shows uniform acceleration.
- •We can find out the value of acceleration from the speed-time graph of a moving body by finding its SLOPE. So, *Acceleration = PQ / OQ*.
- •The distance travelled by the body in the time corresponding to point Q will be equal to the area of the triangle OPQ, which is equal to half the area of the rectangle ORPQ.

Distance travelled = Area of triangle OPQ

Speed-time graph of a body when its initial speed is not zero □ Speed-time Graph Unifrom: when the Initial Speed

zero

In a speed-time graph of a body, a straight line sloping downwards indicates uniform retardation.

To Derive The Equations Of Unifomly Accelerated Motion By Graphical Method

To derive v = u + at by graphical method

```
Now, Initial velocity of the body, u = OA
And, Final velocity of the body, v = DC
But from the graph DC = DB + BC
Therefore, v = DB + BC
Again BC = OA
So, v = DB + OA
Now, from equation (1), OA = u
So, v = DB + u
Or BD= v-u.
We know that the slope of a velocity-time graph is equal to
Acceleration, a = slope of line AD
Or a = DB/AB
But AB = OC = t,
so, putting t in place of AB in the above relation,
we get:
so, a = DB / t
Or DB = at
Now, putting this value of DB in equation (4) we get:
 v = at + u
This equation can be rearranged to give:
                                              v = u + at.
```


☐ To Derive s = ut + ½at² by graphical method

Distance travelled S= Area of fig. OADC

- = Area of rectangle OABC + Area of triangle ADB
- •I- Area of rectangle OABC = OA × OC
- $= u \times t = ut$
- •II- Area of triangle ADB= ½ × AB × DB
- $= \frac{1}{2} \times t \times at$
- $= \frac{1}{2}at^2$

So, distance travelled, $s = ut + \frac{1}{2}at^2$.

\Box 3- To Derive $v^2 = u^2 + 2as$ by graphical method

The distance travelled is given by the

area of the fig. OADC which is a trapezium.

i.e. Distance travelled, s = Area of trapezium OADC

The $s = (Sum of parallel sides) \times Height / 2$

Or
$$s = (OA + CD) \times OC / 2$$

Now, OA + CD = u + v and OC = t

So,
$$S = (u + v) \times t / 2$$

We know that t = (v - u) / a

Putting this value of t in equation, we get:

$$S = (u + v) \times (v - u) / 2a$$

Or
$$2as = v^2 - u^2$$

Or
$$v^2 = u^2 + 2as$$
.

UNIFORM CIRCULAR MOTION

- *When a body moves in a circle, it is called *circular motion*.
- *When a body moves in a circular path with uniform speed, its motion is called <u>uniform circular motion</u>.
- *When a body moves along a circular path, then its direction of motion keeps changing continuously . So <u>uniform circular motion is an accelerated</u> motion.
- We know that the circumference of a circle of radius r is given by $2\pi r$. If the athlete takes t seconds to go once around the circular path of radius r, the speed is given by $v = 2\pi r / t$. But velocity is zero as displacement in one complete rotation is zero.

HOME WORK

- 1. A car is moving in a straight line with speed 18km/hr. It is stopped in 5 s by applying brakes. Find
- i) The initial speed of he car in m/s
- ii) the retardation
- iii) the speed of the car after 2 s of applying the brakes
- 2. A bicycle initially moving with a velocity 5 m/s accelerates for 5 s at a rate of 2 ms⁻². What will be its final velocity?
- 3. Motion of a body is represented by following v-t graph

- i) Find out the displacement at t=6 s
- ii) Find the acceleration from 0 to 4 s and retardation from 4 s to 6 s
- iii) Compare the distance ravelled by the body from 0 to 4 s and from 4 s to 6 s

DAV MODEL SCHOOL DURGAPUR

Abhishek Kumar Dubey